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Racunarsko razmisljanje u obrazovanju
odraslih: ishodi u¢enja STEM intervencije®

Apstrakt: Na medunarodnom nivou se sve viSe paznje posvecuje raunarskom razmi-
$ljanju (u daljem tekstu: RR), posebno mladih udenika. Medutim, RR je kao osnovni
kognitivni proces podjednako vazno i za odrasle, pa se njegov razvoj mora istrazivati i u
toj demografskoj grupi. Zahvaljujuéi svom holistickom i transdisciplinarnom pristupu,
STEM obrazovanje je usko povezano sa RR i moze biti idealno za obrazovanje odraslih,
ukoliko se adekvatno osmisli. U ovom radu je predstavljeno akciono istraZivanje u kojem
su ispitane dimenzije RR u kontekstu STEM obrazovanja odraslih. Za potrebe istrazi-
vanja je osmisljena STEM intervencija koja se sastojala od osam medusobno povezanih
scenarija. Intervencija je sprovedena u $kolama druge $anse (SDS) jer se njihovi polaznici
odlikuju klju¢nim karakteristikama odraslih u¢enika. U intervenciji je ucestvovalo uku-
pno 48 polaznika, uzrasta od 26 do 75 godina, koji su pohadali &etiri odeljenja u dve SDS
u Atini. Podaci prikupljeni pre i nakon intervencije kvantitativno su analizirani, dok su
kvalitativna zapaZanja iskori$¢ena kao pomo¢ u tumadenju rezultata. Statisticki znacajna
pobolj$anja su uocena nakon STEM intervencije na svim prou¢avanim nivoima tezine i
dimenzijama. Uoden je napredak u apstrakciji, algoritamskom razmigljanju, razlaganju,
generalizaciji i evaluaciji.

Klju¢ne reci: obrazovanje odraslih, ra¢unarsko razmisljanje, Skole druge Sanse, STEM
obrazovanje

Introduction

Computational thinking (CT) is a crucial skill for adult learners, as it fosters
problem-solving abilities that are applicable in various professional and every-
day contexts. CT equips adults with the tools to approach complex challenges
systematically, promoting skills like decomposition, abstraction, and algorithmic
thinking (Yadav etal., 2017). Although adult learners need to develop or improve
their computational thinking skills, challenges often arise due to the absence of
suitable educational methods that consider their specific needs and motivations
(El Mawas et al., 2021).To address the aforementioned challenges, we designed
a small-scale STEM intervention for adult learners enrolled in Second Chance
Schools (SCS) in the Prefecture of Athens, Greece. The intervention was in-
formed by both adult education principles and the pedagogical foundations of
STEM education.

# Istrazivanje predstavljeno u ovom radu zasnovano je na istrazivanju koje E. A. Kotzampasaki sprovodi u okviru
rada na svojoj dokrorskoj disertaciji pod mentorstvom G. A. Koulaouzides.
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Computational Thinking

Computational Thinking (CT) is conceptualized as a cognitive process that fa-
cilitates the automatization of certain aspects of human thought (Selby & Wool-
lard, 2014). Wing (2006) pointed out that CT, as a process based on the fun-
damental concepts of computer science, might contribute as a way of thinking
and approaching several critical issues in problem solving, and might lead us in
understanding both human behavior and systems design, which is why CT must
be recognized as one of the fundamental life skills. Some years later, Wing (2017)
explained that computational thinking was “the thought processes involved in
formulating a problem and expressing its solution(s) in such a way that a com-
puter—human or machine—can effectively carry out.”

Although there is no universally accepted definition of CT, X. Tang and
associates (2020) attempted to categorize some of the most common definitions.
They distinguish between those emphasizing programming or computer science
concepts (Brennan & Resnick, 2012; Denner et al., 2012; Weintrop et al., 2016)
and those focusing on solving real-world problems through a combination of
knowledge and methods from various fields (CSTA & ISTE, 2011; Selby &
Woollard, 2014; Yadav et al., 2014). Moreover, in a more comprehensive ap-
proach, Denning and Tedre (2019, p. 4) explained that CT “is the mental skills
and practices for (a) designing computations that get computers to do the jobs
for us and (b) explaining the interpreting the world as a complex information
processes [...] the explanation aspect reflects the science tradition of computing
in which people seek to understand how computation works and how it shows
up in the world.” However, in addition to efforts to define computational think-
ing, considerable debates about the main CT dimensions are under way in the
research and educational community. Ling, et al. (2018) analyzed the relevant
literature and concluded it by separating CT dimensions from CT skills. They
opted for the five CT dimensions developed by Selby & Woollard (2014) that
have received considerable acceptance:

* Abstraction: According to Wing (2011), abstraction is a crucial, high-
level thinking process in computational thinking, playing a key role in
identifying common properties and excluding non-essential data, there-
by enhancing the ability to manage complexity. In other words, abstrac-
tion serves as a fundamental tool for handling complexity, enabling the
development and understanding of simpler models to achieve a clearer
comprehension of complex phenomena (Cook et al., 2012).

* Algorithmic Thinking: According to Hu (2011), computational think-
ing involves a step-by-step determination of a functional process. He
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points out that individuals who study models and algorithms develop
skills that can enhance critical thinking and benefit from them on mul-
tiple levels.

* Decomposition: Decomposition involves an initial assessment of a prob-
lem’s complexity by breaking it down into smaller, more manageable
components, making it easier to solve (Djambong & Freiman, 2016). It
is about “...finding structure in the problem and determining how the
various components will fit together in the final solution” (Csizmadia et
al., 2019, p. 45).

* Generalization: This dimension involves recognizing the value of a solu-
tion in solving similar or other real-world problems, as well as reusing
the solution either as part of another solution or in its original form
(Csizmadia et al., 2019; National Research Council, 2011; Selby &
Woollard, 2014).

* Evaluation: This dimension of computational thinking involves imple-
menting, representing and assessing previous phases of problem-solving
efforts (Fogli et al., 2017). Evaluation includes exploring alternatives,
comparing options, and considering how these alternatives might func-
tion in real-life situations (Csizmadia et al., 2019).

The aforementioned dimensions of computational thinking have been ap-
plied in various research studies (Csizmadia et al., 2019; Ling et al., 2018; X.
Tang et al., 2020) and form the basis of our approach in this study. At this point,
the following question arises: “How can we actually foster computational think-
ing?”. In our opinion, CT-STEM may be an answer.

Computational Thinking in STEM

Computational Thinking in STEM (CT-STEM) refers to the development of
computational thinking skills through STEM education. It’s important to rec-
ognize that

STEM (Science, Technology, Engineering and Mathematics) edu-
cation is not merely the accumulation of knowledge across scientific
fields, but rather a holistic, transdisciplinary approach that moves
beyond isolated specializations. It emphasizes the study of connec-
tions, focuses on interrelated processes, and does not concentrate
on individual phenomena (Psycharis et al., 2018 as cited in Kot-
zampasaki & Koulaouzides, 2024, p. 183).
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STEM education fosters the development of scientific, mathematical and
technological practices, concepts, and insights, which enable the resolution of re-
al-world challenges and complex questions (Man et al., 2016). Integrating com-
putational thinking into STEM education promotes interconnectedness across
scientific fields and enhances math and science lessons to reflect current profes-
sional practices (X. Tang et al., 2020). Swanson, et al. (2019) analyzed interviews
with CT-STEM researchers and proposed a taxonomy with four key CT-STEM
practices: data handling, simulation and modeling, systems thinking, and com-
putational problem-solving. Research shows a positive impact of both STEM
education and game-based learning on computational thinking; however, as dis-
cussed in the following paragraph, most of these studies have been conducted
with younger students (Fidai et al., 2020; Lu et al., 2023; Ma et al., 2023).

Computational Thinking Evaluation: Target Populations and Pools

Interest in computational thinking (CT) has grown significantly among research-
ers, and recent years have seen the publication of meta-analyses on the topic.
Literature reviews and meta-analyses, such as those by X. Tang and associates
(2020) including 96 studies; Cutumisu and associates (2019), reviewing 39 em-
pirical studies; and Poulakis and Politis (2021), examining 82 studies, all reach a
common conclusion: most CT research focuses on primary and secondary school
students, with limited work addressing adult learners. In the few studies involv-
ing adults, the participants were typically college students.

Another notable finding is that most CT evaluations focus narrowly on
computing or programming skills, while CT itself encompasses a broader set of
cognitive skills. X. Tang and associates (2020) propose several directions for fu-
ture research: a) conducting more studies with older age groups, such as high
school students, college students, vocational trainees, and learners in non-tradi-
tional educational settings; b) basing studies on clear CT definitions and explor-
ing connections across different thematic areas; ¢) incorporating qualitative data
like interviews or focus groups to deepen understanding of CT; d) ensuring reli-
ability and validity in assessments; ) recognizing the unique aspects of CT that
distinguish it from programming or computing; and f) designing CT assessment
tools adaptable across various platforms to allow comparisons. Poulakis and Politis
(2021) echo these recommendations, noting the lack of independent, validated
evaluation tools for all age groups and advocating multi-method evaluations that
include quantitative research as the most effective approach. A critical issue in CT
research is the need for reliable assessment tools to measure whether CT skills are
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developed or improved. CT assessments can generally be categorized by their ap-
proach: a) assessments based on specific programming platforms, b) psychometric
or scale-based tools, and ¢) multi-method approaches (Poulakis & Politis, 2021).

In our study, we focus on the internationally recognized Bebras CT com-
petition (see bebras.org) to collect our main quantitative data, and we explain
our choice in detail. Bebras questions are designed to assess cognitive skills useful
in solving problems across various domains (X. Tang et al., 2020) and are based
on the application of CT skills in daily life (Romadn-Gonzdlez et al., 2019). X.
Tang and associates (2020) note that Bebras is widely used and valued by re-
searchers due to its distinct advantages: a) no electronic devices are required; b)
no prior knowledge of computers or programming is necessary; c) the questions
are designed as riddles, brainteasers, or logic puzzles; d) the questions are avail-
able at varying difficulty levels; and e) each question is mapped to specific CT
dimensions, aligning with Selby and Woollard’s (2014) CT framework. Research
suggests that Bebras questions provide a high-quality basis for CT assessment
(Dagiene & Stupuriene, 2016), while psychometric analyses have been conduct-
ed to further confirm their validity (Araujo et al., 2019; Hubwieser & Miihling,
2015). Although Bebras competitions are primarily aimed at students under 18,
researchers, such as Lépez and Garcia-Pefialvo (2016), have successfully adapted
Bebras questions to assess CT in higher education students. Similarly, Lockwood
and Mooney (2018) analyzed Bebras tasks and concluded that they were appro-
priate for college-level students as well.

CT and Adult Learners

Research on computational thinking (CT) specifically related to the general adult
population remains limited (Kotzampasaki & Koulaouzides, 2024). A published
content analysis of relevant research verified that there is only very limited focus
on adult learners aside from educators or higher education students in the 336
studies published between 2006 and 2018 (K. Y. Tang et al., 2020). However,
higher education students and undergraduate students, in particular, may not be
generally classified as “adult learners” given the common understanding that they
do not necessarily exhibit the key characteristics of adult learners, since adult-
hood is a complex concept linked to self-definition, social roles and social accept-
ance (Hill et al., 2023; Koulaouzides, 2019).

We should, however, take into consideration findings from research that
examined computational thinking beyond schooling. For example, Lafuente-
Martinez and associates (2022) attempted to create a CT test for adults, conduct-
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ing reliability verification, validity, and factor analysis to develop a one-dimen-
sional model focusing on algorithmic thinking (Algorithmic Thinking Test for
Adults ... ATTA). However, we were unable to identify any published studies that
utilized this tool. Moreover, Zapata-Rivera et al. (2019) studied ten educators and
ten adult learners and made recommendations for programming training to sup-
port digital learning tools like alarms and notifications. This study revealed that
adults primarily need support and training in CT aspects that meet lifelong learn-
ing demands, such as practical skills and time management, rather than computer
use or programming (Zapata-Rivera et al., 2019). El Mawas et al. (2021) tested
the adaptive educational game “AutoThinking” on 12 postgraduate students in
a digital learning master’s program. The “AutoThinking” labyrinth game uses
flow charts and block programming; the study included questions assessing CT
knowledge, such as “What is debugging?” and “What is a sequence?”. The results
suggest that the AutoThinking game effectively increased the students’ knowl-
edge of concepts related to computational thinking and computing (EI Mawas
etal., 2021). Moreover, Gao (2020) studied students in higher vocational educa-
tion in China, finding that game-based learning and CT improved their learning
interest and engagement; he also highlighted the need for studies involving older
age groups. Similarly, Kazimoglu (2020) examined the effectiveness of a “serious
game” for 151 first-year computer science students, noting its positive impact
on motivation to learn programming and confidence in using CT skills. Serious
games are “digital games and equipment with an agenda of educational design
and beyond entertainment” (Park et al., 2012, as cited in Pliasa & Fachantidis,
2021, p. 619) and are utilized in educational research, such as that by Pliasa and
Fachantidis (2021), because of their potential to develop skills, achieve cognitive
objectives and modify attitudes, benefiting both typical and autistic students.

Methodology: Choices and Concerns

Research Gap and Research Questions

The above-mentioned studies revealed a significant gap in CT studies focusing
on adult learners, particularly those without prior computing or programming
knowledge. Therefore, we decided to focus on adult learners with low qualifica-
tions and examine what happens in formal education environments when they are
given a second opportunity to participate in education (Cutumisu et al., 2019;
Kotzampasaki & Koulaouzides, 2024; Ortiz et al., 2023; Poulakis & Politis, 2021;
X. Tang et al., 2020). Our decision was also informed by the work of Ortiz and
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associates (2023), who point out the importance of research related to ways of
reducing the digital divide among adults participating in basic literacy programs.

In Greece, this opportunity is offered to the general adult population in
the Second Chance Schools (SCSs). The SCSs in Greece are attended by adults,
who had dropped out of school before completing their nine-year compulsory
education. SCSs aim to support the learners’ cultural, economic and social de-
velopment, and self-confidence to help them enter or advance in the workforce
by teaching them essential skills (Koutouzis et al., 2023). SCS students generally
exhibit the main characteristics of adult learners; they face constraints such as
time limitations, work, and family responsibilities, wherefore the SCS curricula
address their diverse needs by employing adaptable educational tools to make
education a multidimensional endeavor. Our main research question related to
the research presented in this paper is:

*  What is the impact of a designed STEM didactic intervention on the
dimensions of computational thinking on Second Chance School adult
students?

and more specifically:

*  What is the impact of the STEM intervention on each of five CT di-
mensions (abstraction, decomposition, algorithmic thinking, evalua-
tion, generalization)?

*  What is the impact of the STEM intervention on CT’s varying levels of
difficulty (easy, medium, difficult)?

Procedure

To answer the research questions, we conducted a mixed-method action research
study. We designed a STEM intervention featuring a sequence of interconnected
educational scenarios centered on common transdisciplinary concepts. The inter-
vention included seminars with a variety of activities, such as educational robotics,
physical computing, micro-construction, experiments and simulations, alongside
diverse teaching techniques. For instance, participants worked with the Edison
robot, micro:bit, and various extensions, such as motors, sensors and LEDs, while
also engaging in chemistry experiments and simulations, in order to explore the
concept of “color” from multiple perspectives. Detailed information on the design
and content of the STEM intervention will be published in a separate article.
Our STEM intervention was implemented four times at the two SCSs in
Greece. The selection of the SCSs was guided by their expressed willingness to
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participate and the practical feasibility of integrating the intervention in their
curriculum. We secured the necessary permissions in communication with these
schools and ensured that the study was implemented in a manner that respected
their schedules and supported their smooth operation.

Participants first completed the Bebras CT pretest that is explained in the
Instruments section. This was followed by the implementation of the interven-
tion consisting of eight STEM educational scenarios. The seminars were gener-
ally three hours long and conducted once a week, unless there were scheduling
conflicts with the SCSs, such as participation in other activities or an educational
visit, in which case they were held bi-weekly or as two-hour sessions. Some of
the didactic scenarios required less time and it was possible to implement two of
them within a three-hour seminar. In each group, the educational intervention
required between 16 to 19 teaching hours, with variations due to the available
time in the SCSs, adjustments to the specific needs of each group, the number of
learners, possible absences and the time required for brief repetitions. Implemen-
tation of the intervention lasted approximately three months in each SCS. Two
weeks after the intervention was completed, the participants completed the post
test, along with additional questionnaires addressing various research questions.
To accommodate reading difficulties faced by some SCS adult learners, we read
all the questions out loud during the process.

Our experimental research primarily combined quantitative correlation
and descriptive methods through pretests and posttests. We also included quali-
tative data from observations during the intervention and responses to CT tests,
documented in a research diary.

Population and Sample

Forty-eight adult learners aged 26...75 participated voluntarily in our interven-
tions. At the start, we observed that most (41.7%) belonged to the 40...49 age
group, followed by 33.3% in the 50...59 age group; a smaller proportion (20.8%)
were in the 30...39 age group, one participant (2.1%) belonged to the 18...29
age group, while another (2.1%) belonged to the 70+ age group. The estimated
average age of the trainees stood at approximately 45.85 years, which may differ
from the actual average, which could only be determined if we had exact age data
for each participant. Twenty-seven (56.25%) of the participants were women and
21 were men (43.75%). While the findings may not be broadly generalized to all
populations, they may be applicable to those with similar sociocultural character-
istics, warranting further investigation in comparable settings.
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Instruments

To assess the CT dimensions, we designed a questionnaire based on the Bebras
CT competition. We selected questions from the United Kingdom’s 2015...2018
contests, which were developed in collaboration with Oxford University and
Google, with contributions from global experts. Table 1 provides a list of ques-
tions along with references to detailed descriptions, answers and clarifications.
The selection process involved three phases, and they were conducted with the
assistance of experts, educators, and SCS students. The following criteria were
used to select the questions: (a) questions needed to be evenly distributed across
difficulty levels, (b) they should not require complex mathematical calculations,
(c) they should not assume prior programming knowledge, and (d) the set of
questions should sufficiently represent the five CT dimensions.

A native speaker fluent in both English and Greek reviewed the translation
and the questions were piloted. The final selection included 12 questions cover-
ing all five CT dimensions across three levels of difficulty, comprising eight mul-
tiple-choice and four open-ended questions. Cronbach’s alpha at pretest (.844)
indicated a reliable test with high internal consistency; however, posttest Cron-
bach’s alpha decreased (.532), potentially due to the participants’ newly acquired
knowledge, shifts in thinking, or changes in behavior or engagement. Further
research could clarify these changes.

Ethical Issues

The research was approved by the Ethics and Research Committee of the Hellenic
Open University (51/2024). Furthermore, it received approval for implementation
in the Second Chance Schools from the General Secretariat of Vocational Educa-
tion, Training, and Lifelong Learning, the competent authority of the Greek Min-
istry of Education. Participants voluntarily participated in the study and provided
their consent by signing a Declaration of Consent after being fully informed.

Findings

Analysis of the 12 CT Questions

We aimed to examine the potential relationship between pretest and posttest
performance on the responses to the 12 Computational Thinking (CT) test ques-
tions (categorized as correct, no answer, or incorrect) (Table 1) by conducting a
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chi-square (x?) test in SPSS. However, the x? test could not be applied because its
assumptions were violated. Specifically, the expected frequencies in some cells of
the 3x3 contingency table were below the threshold of 5, a condition that under-
mines the validity of the test. This violation occurs because the x? test relies on
sufficient sample sizes in each cell to ensure accurate statistical inference. Applica-
tion of the test under these conditions could lead to biased or unreliable results.
To address this issue and maintain the robustness of the analysis, we combined
the adjacent response categories “no answer” and “incorrect”. This approach is
commonly used to meet statistical assumptions while preserving the interpret-
ability of the data. All variables were recoded (1 = “correct”, 0 = “incorrect or no
answer”) and McNemar’ s tests for equality of proportions were performed to as-
sess the independence of two correlated samples. The necessary prerequisites for
conducting the McNemar test were met, as it involves a pair of binary variables
for ten questions (excluding Q12 and Q8, which require a different approach;
further explanations are provided five paragraphs below). The null hypothesis
assumes that there is no difference in the proportions of answers between the
pretest and posttest. For questions 1, 2, 3, 4, 5, 6,9, 10 and 11, McNemar’ s test
(N =48, p <.05) led to rejection of the null hypothesis. This suggests a significant
difference between pretest and posttest responses. Considering the data in Table
1 as well, it may be inferred that a higher percentage of learners are expected to
provide correct answers to these CT questions after the STEM intervention.

Eight of the questions were multiple-choice and not analyzed further.
However, questions 6, 7, 8 and 12 were open-ended, warranting additional analy-
sis. This is crucial for examining not only participants who provided fully correct
answers but also those whose responses closely approximate the correct solution.

Question 6 is considered correct only if learners determine the correct
order of four colors, achieved by blending colors and combining various data.
Only one out of 48 learners provided a completely correct answer in the pretest,
whereas this ratio improved to one out of three in the posttest (Table 1). All
incorrect answers were analyzed since even a minor error during the solution
process results in an incorrect color. Notably, two learners in the pretest and
four in the posttest managed to correctly identify three out of four colors in the
correct order, suggesting that they possess the logical approach required to solve
Question 6. Among those who answered incorrectly, 14.6% of participants in
the pretest demonstrated reasoning far removed from the problem-solving logic,
a percentage that decreased to 8.3% in the posttest.

The percentage of correct answers to Question 7 more than doubled
(18.8% in the pretest, 41.7% in the posttest). However, this is the first question
where the proportion of incorrect answers increased after the intervention (25%
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in the pretest, 47.9% in the posttest), although a larger number of participants
provided an answer (no answer: 27% in the pretest, 5% in the posttest). Despite
the increase in correct answers, the McNemar Test (/V = 48, p = .007, binomial
distribution) suggests that we should adopt the null hypothesis, indicating no
significant difference in the proportions of answers.

To explain the rise in incorrect answers to Question 7, and considering
that the question was open-ended, we analyzed all the incorrect responses. We
found that some participants approached the problem with the correct reasoning
but narrowly missed the exact solution. Specifically, they arrived at the correct
answer for a satisfaction level of 13, whereas the precise answer was for a satis-
faction level of 14. As a result, they provided a second-best solution. When we
combined those who gave either the best or second-best solution, the proportion
increased from 27.1% in the pretest to 70.8% in the posttest. We recorded the
data (1="best or 2" best solution”; 0 = incorrect), and the result of the McNe-
mar test (/V = 48, p <.001, binomial distribution) indicates a statistically signifi-
cant difference between the pretest and posttest. Therefore, it may be concluded
that learners were more likely to approach the solution more accurately after the
STEM intervention, providing either the best or second-best solution.

Question 8 was also open-ended, requiring participants to identify the
least expensive solution in a path graph. No participants provided the correct
answer in the pretest, but 43.8% succeeded in finding the exact solution in the
posttest. The most cost-effective solution is a path with a length of 41, although
many participants identified the second-best path (42). Despite an increase in
incorrect answers, more participants were closer to the correct solution. The com-
bined proportion of those providing either the correct or the second-best solution
was 12.5% in the pretest, which improved to 72.9% in the posttest.

Similarly, no participant provided the correct answer to the open-ended
Question 12 in the pretest. The answer is considered absolutely correct if partici-
pants decode the Kix-Code and identify the four letters or numbers in the correct
order. Analysis of the incorrect answers reveals that 2% of participants provided
the best or second-best solution (three or four correct elements) in the pretest,
while this percentage increased to 27% in the posttest.

As mentioned in the first paragraph of this section, the McNemar test
should not be applied to Questions 8 and 12 using the codes “correct” and “in-
correct or no answer,” since no one provided the correct answer in the pretest. A
new recoding scheme was applied for more statistically reliable results: “1 = best
or 2" best solution” and “2 = incorrect or no answer.” For both questions, the
McNemar test results (V= 48, p <.001, binomial distribution) show that the null
hypotheses are rejected. Data in Table 1 lead to the conclusion that a higher pro-
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portion of participants are expected to provide the best or second-best solutions
to Questions 8 and 12 after the STEM intervention.

Table 1. Outcomes of CT Tests, CT dimensions per question and McNemar

No answer Correct Incorrect
n % n % n %
Q1: Balls Pretest 10 20.80% 13  27.10% 25 52.10%
(A) AB, AL, EV Posttest 4 8.30% 34 70.80% 10 20.80%
McNemar: p = .004
Q2: Blossom Pretest 22 4580% 10 20.80% 16 33.30%
(B) EV, GE Posttest 2 420% 39 8130% 7  14.60%
McNemar: p <.001
Q3: Five Sticks Pretest 13 27.10% 25 52.10% 10 20.80%
(B) AB, AL, DE Posttest 0 0.00% 39  81.30% 9 18.80%
McNemar: p = .004
Q4: Superpower Family ~ Pretest 20 41.70% 15 31.30% 13 27.10%
(A) AB, AL, DE, EV Posttest 3 6.30% 33 68.80% 12 25.00%
McNemar: p = .001
Q5: Beaver Lunch Pretest 21 43.80% 6 12.50% 21  43.80%
(B) AB, DE, EV, GE Posttest 0 0.00% 35  7290% 13 27.10%
McNemar: p <.001
Q6: Theater* Pretest 36 75.00% 1 2.10% 11 22.90%
(B) AL, DE, EV Posttest 23 47.90% 16 3330% 9  18.80%
McNemar: p <.001
Q7: Soda Shop* Pretest 27 5630% 9 18.80% 12 25.00%
(B) AB, AL, EV Posttest 5 10.40% 20 41.70% 23 47.90%
McNemar: p =.007
(For the best or 2™ best solution McNemar p <.001)
Q8: Toll roads* Pretest 32 66.70% 0 0.00% 16 33.30%
(B) AB, AL, EV, GE Posttest 5 10.40% 21 43.80% 22 45.80%
(For best or 2™ best solution McNemar: p <.001)
Q9: Gifts Pretest 40  83.30% 1 2.10% 7 14.60%
(C) AL, EV Posttest 10 20.80% 26 54.20% 12 25.00%
McNemar: p <.001
Q10: Bowl Factory Pretest 37 77.10% 1 2.10% 10 20.80%
(C) AB, AL, DE, EV Posttest 21 43.80% 7 14.60% 20 41.70%

McNemar: p = .031
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No answer Correct Incorrect
n % n % n %
Q11: Icon Image
Reduction Pretest 43  89.60% 3 6.30% 2 4.20%
(C) DE, EV, GE Posttest 21 43.80% 16 33.30% 11  22.90%
McNemar: p <.001
QI12: Kix Code* Pretest 44 91.70% 0 0.00% 4 8.30%
(C) AL, GE Posttest 23 4790% 13 27.10% 12 25.00%

(For the best or 2 best solution McNemar: p <.001)

Mc Nemar N=48 Binominal distribution

n = number of participants who provided each type of response.

(A)= Easy, (B)= Medium, (C)= Difficult

Abstraction (AB), Algorithmic Thinking (AL), Decomposition (DE), Generalization
(GE), Evaluation (EV)

*Open-ended questions
For a more detailed description of questions with answers and clarifications see Blokhuis
et al. (2015), Blokhuis et al., (2016), Blokhuis et al., (2017), Blokhuis et al., (2018).

Table 1 also provides statistical data on the performance of the 12 CT
test questions before and after the intervention. Notably, there is an observed
improvement in correct responses across all CT questions following the STEM
learning program. For example, only 20.8% of participants answered Q2 cor-
rectly in the pretest, compared to 81.3% in the posttest. Figure 1 reveals that a
greater number of participants answered correctly across all questions after the
STEM intervention, without exception.
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Figure 1. Number of Participants Who Correctly Answered Each Question
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Further Analysis of the Number of Correct CT Answers

To conduct a more in-depth analysis, we calculated the number of correct an-
swers provided by each participant and applied both tests. For the variables
“number of correct answers in the pretest” and “number of correct answers in
the posttest”, a paired-sample #-test was considered to assess the equality of the
two means. While the #-test assumptions appeared to be satisfied in terms of
quantitative variables, sample derivation from the same population and the as-
sumption of normality based on the Central Limit Theorem, the results of the
Shapiro-Wilk test (p <.001 for the pretest, p =.036 for the posttest) indicated that
the assumption of normality was violated. Consequently, a Wilcoxon Signed-
Rank Test was conducted, revealing a statistically significant difference between
the two measurements (z = -5.795, p <.001). Specifically, the median number of
correct answers increased from Mdn = 1 in the pretest to Mdn = 6 in the posttest,
with positive ranks (/V = 44) demonstrating that the STEM intervention had a
substantial positive effect on the participants’ ability to provide correct answers.
Additionally, the mean number of correct answers increased from M =
1.75 (pretest) to M = 6.23 (posttest), with a mean improvement of 4.48 correct
answers (SD = 2.41). This demonstrates that the STEM intervention had a sub-
stantial positive effect on the participants’ ability to provide correct answers. A
line graph of the number of correct answers, with the Standard Error of the Mean
(SEM = 0.35 for pretest and SEM = 0.4 for posttest), is presented in Figure 2.
12

WA AR

== Number of correct answers (pretest) = Number of correct answers (posttest)

Figure 2. Number of Correct Answers with the Standard Error of the Mean (SEM)

As per the total number of correct answers of the 48 participants, they pro-
vided 84 correct answers in the pretest and 299 in the posttest. This represents a
256% improvement over the initial number of correct answers. Alternatively, the
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posttest performance corresponds to 356% of the pretest performance in terms of
group success. It is important to note that these percentages do not account for the
improvement achieved by participants who provided second-best solutions after
the intervention, wherefore the actual improvement is likely even more substantial.

The Spearman Rank Correlation Coefficient was used to evaluate the re-
lationship between the number of correct answers in CT before and after the
intervention, as the variables did not follow a normal distribution. The results
indicate a significant positive correlation, p (46) = .374, p = .009. This finding
suggests that the participants who performed well before the intervention tended
to perform well afterwards.

Abstention Rate

This section examines the abstention rate, focusing on the number of questions
each participant chose not to answer. Figure 3 provides a visual representation of
this data. Before the intervention, only two participants answered all questions,
whereas this number increased to ten after the intervention. Moreover, 18 partici-
pants left between nine and 12 questions unanswered in the pretest, while in the
posttest, no participant left more than eight questions unanswered.
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Figure 3. Number of Unanswered Questions

The requirements for a Wilcoxon Signed-Rank Test for the variables “Number of
unanswered questions in the pretest” and “Number of unanswered questions in the
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posttest” were met, as the Shapiro-Wilk test (p <.023 for the pretest, p =.001 for the
posttest) revealed non normality. The results of the Wilcoxon Signed-Rank Test (z
=-5.60, p <.001) revealed a statistically significant difference between the two vari-
ables. Specifically, there was a significant decrease in the number of “unanswered
questions” in the posttest compared to the pretest. The negative ranks (/V = 42)
indicated that most participants had fewer unanswered questions after the STEM
intervention. The median number of unanswered questions decreased from Mdn =
7 in the pretest to Mdn = 2 in the posttest. These findings indicate that learners are
significantly more likely to attempt answering CT questions after STEM lessons.

Additionally, a #-Test was conducted to confirm the findings, as the t-test
is known to be robust to violations of normality in larger samples. The #test re-
sults (/47] = ...10.40, p <.001) reveal a highly significant difference between the
number of unanswered questions in the pretest (M = 7.19, SD = 3.44) and the
posttest (M = 2.44, SD = 2.14). These results further support the robustness of
the rtest despite the violation of normality and confirm the observed improve-
ment following the STEM intervention.

A Spearman’s correlation was conducted in order to explore the correlation
between pretest and posttest abstention. The results reveal a significant positive
relationship between the total number of unanswered questions in the pretest and
the posttest, p(46)= .451, p = .001. Participants who had more “no answers” in
the pretest tended to have more “no answers” in the posttest as well.

Calculation of Performances According to Bebras

Evaluation of CT performance requires calculation of the score based on the Bebras
competition’s scoring rules for the 12 questions, given that Bebras questions are
used in this study. As shown in Table 2, the three levels of difficulty yield different
point values (zero, positive, or negative). Additionally, a bonus starting point must
be applied to the scoring system to ensure that negative final scores are impossible.

Table 2. Information for Score Calculation According to the Bebras
Competition

“Incorrect”  “No Answer” “Correct” Questions Start Maximum
Points Points Points Points Points
(A) Easy 0 0 6 1,2,3,4 0 24
(B) Medium -2 0 9 5,6,7,8 8 36
(C) Difficult -4 0 12 9, 10, 11, 16 48
12

Total score 24 132
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For the variables “Bebras score pretest” and “Bebras score posttest,” the
Shapiro-Wilk test revealed non-normality for the pretest scores (p =.001), where-
as the posttest scores were normally distributed (p = .15). A Wilcoxon Signed-
Rank Test was conducted for these variables, with the results (z = ...5.97, p <.001)
indicating a significant increase in the participants’ scores on the CT test fol-
lowing the intervention (z = ...5.97, p <.001). The median score on the Bebras
measuring score was Mdn = 30 before the intervention and increased to Mdn =
64 after the intervention. The positive rank (V = 44) shows that the participants
scored higher in the posttest compared to the pretest and the negative rank (V=
0) shows that none of the participants scored lower after the intervention.

The mean pretest scores (M = 31.71, SD = 9.98) and posttest scores
(M = 67.50, SD = 24.97) show that both the mean and median scores more than
doubled after the intervention.

Spearman’s correlation was conducted to explore the correlation between
the pretest and posttest CT scores according to Bebras. The results revealed a
significant positive relationship between the pretest and posttest scores, p
(46) = .492, p <.000. Participants who performed better in the pretest tended to
perform better in the posttest as well.

In developing a mathematical model to analyze the correlation between
the variables, a simple linear regression was found to provide a clear and inter-
pretable equation, £(1,46) = 15.35, B = 0.500, p = .000. The R*was 0.250, indi-
cating that the Bebras score pretest explained approximately 25% of the variance
in the Bebras score posttest. The regression equation was:

[Bebras score posttest] = [27.881] + 1.25 [Bebras score pretest]

This implies that the predicted Bebras score on the posttest increases by
approximately 1.25 points for each 1-point increase in the Bebras score on the
pretest. Confidence intervals indicate that we can be 95% certain that the slope
to predict the learners’ scores on the Bebras test after the STEM intervention,
based on their scores before the intervention, lies between 0.608 and 1.891.

In addition, the possibility of more complex relationships was explored
and a third-degree polynomial model explained 32.4% of the variance (R?=.324,
2 <.001). The polynomial model was found to be statistically significant, with
F(3,44) =7.015, 3 = 0.211, p <.001. While this model showed an improvement
in explaining the variance, it includes more terms and is less straightforward in
interpreting the results. Therefore, we present the equation but will not elaborate
this model further.

[Posttest]=-7.748+1.764x[Pretest]-0.0275x[Pretest]?+0.0001 x [ Pretest]?
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Difficulty Level Scores and Improvement in CT

The function for calculating CT scores at each difficulty level follows the Bebras
scoring rules, as outlined in Table 2. Table 3 presents the mean scores for each
difficulty level before and after the intervention, along with the corresponding
percentage increases in performance. The analysis demonstrates significant im-
provements across all levels of difficulty: a 230% increase at the easy level, a
265% improvement at the medium level, and a 176% increase at the difficult
level. Overall, the participants achieved a 213% improvement in their mean per-
formance across all levels combined.

Table 3. Difficulty Level Scores According to the Bebras Calculation method

N=48 Shapiro-Wilks Mean score Percentage Mean
Increase
Pretest Posttest Pretest Posttest
Easy 2 <.001 2<.001 7.88 18.13 230.08%
Medium p=.021 2=.021 8.50 22.46 265.24%
Difficult 2 <.001 p=.030 15.33 26.92 175.60%
Total 31.71 67.5 212.87%

A more detailed analysis was conducted for each difficulty level (easy, me-
dium, difficult) to assess the statistical significance of the differences between
pretest and posttest scores, as well as the correlations between them. According
to the data presented in Table 3, the results of the Shapiro-Wilk test indicate that
the distribution is not normal at any level of difficulty, both in the pretest and the
posttest. Therefore, the most appropriate test for analysis is the Wilcoxon Signed-
Rank Test and Spearman’s correlation.

Easy Level: A Wilcoxon Signed-Rank Test (z = -5.36, p <.001) indicates
that scores on easy CT questions were significantly higher in the posttest than
in the pretest. The median score on the “easy” questions posttest was Mdn = 95,
compared with Mdn = 84 for the pretest. These results suggest that the partici-
pants showed significant improvement in answering the easy CT questions after
the STEM intervention. However, the Spearman’s correlation rank test shows that
there is no significant relationship between these variables, 7 (46) = .149, p = .313.

Medium Level: Similarly, a Wilcoxon Signed-Rank Test (z = -5.73, p
<.001) reveals that scores on medium level questions were significantly higher
in the posttest than in the pretest. The median score on the medium level ques-
tions after the STEM intervention was Mdn = 75, compared to Mdn = 65 before
the intervention. This indicates that the intervention had a positive effect on
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the participants’ CT performance on medium level questions. A Spearman’s cor-
relation was conducted to evaluate the relationship between the medium level
question scores in the pretest and the posttest, and there was a significant positive
relationship between the two variables, p(46) = .413, p = .004. This suggests that,
similar to the easy level, we can expect better scores after the STEM lessons at the
medium level, with performance being correlated to the pretest score.

Difficult Level: Scores on difficult questions were significantly higher in
the posttest than in the pretest, as the results of a Wilcoxon Signed-Rank Test (z
= -5.73, p <.001) reveal. The median score on the “difficult” questions posttest
was Mdn = 60, compared with Mdn = 44 for the pretest. These findings suggest
that participants were able to significantly improve their CT performance on the
difficult questions following the STEM intervention. A Spearman’s correlation re-
vealed no significant relationship between the difficult question scores in the pre-
test and the posttest, p(46) = .203, p = .167. Thus, while improved scores are ex-
pected on the difficult CT questions after the intervention, there is no significant
correlation between pretest and posttest performance, similar to the easy level.

Regarding Each Computational Thinking Dimension

One of the main reasons for choosing Bebras tasks is that they provide clarity
regarding the specific dimensions of CT required to solve each question, as out-
lined in Table 1. This allows us to apply scoring functions for each CT dimension
using functions based on the Bebras rules, as shown in Table 2. For example, the
dimension of abstraction (AB) is necessary for solving questions 1, 3, 4, 5, 7, 8
and 10. These questions vary in difficulty and different points are awarded for
correct or incorrect answers. Table 4 presents the key statistical data for the CT
dimension scores.

Table 4. Statistical Analysis of CT Dimensions

Shapiro — Wilks Wilcoxon Descriptives Spearman
Signed
Pretest Posttest ~ Ranks Test Pretest Posttest

Abstraction p=.021 p=.119 2z=..536 M=16.81 M=3517 r(46)=.381

Start point = 10 <001 SD=796 SD=14.34 p=.008
Max = 67 Mdn =16  Mdn =31

Algorithm »=.006 p=.281 2z=..594 M=3596 M=47.52 r(46)=.461
Start point = 18 »<.001 SD=8.89 SD=2136 p=.001.

Max = 99 Mdn =36 Mdn = 45
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Shapiro — Wilks Wilcoxon Descriptives Spearman
Signed

Pretest Posttest ~ Ranks Test Pretest Posttest
Decomposition p=.001 p=.067 z=..5.30 M=17.25 M=30.19 r(46) =...009
Start point = 12 <001 SD=644 SD=10.71 p=.954.
Max = 57 Mdn =16  Mdn =27
Evaluation p=.005 p=.071 z=..594 M=2492 M=5638 r(46)=.485
Start point = 20 2 <.001 SD=8.88 SD=22.16 p=.000
Max = 110 Mdn =21 Mdn =56
Generalization p=.001 p=.690 z=..5.66 M=13.08 M=3125 r(46)=.226
Start point = 12 2 <.001 SD=558 SD=13.43 p=.122
Max = 60 Mdn =12  Mdn =32

As shown in Table 4, Wilcoxon Signed-Rank Tests conducted between
pretest and posttest scores across all five dimensions reveal statistically signifi-
cant differences (p <0.001). These findings indicate substantial improvements
in performance following the STEM intervention across all CT dimensions. To
provide further insight into the magnitude of these improvements, we calcu-
lated the percentage mean increase. The largest percentage increases, with more
than double the improvement, were observed in the dimensions of generalization
(239%), evaluation (226%) and abstraction (209%). Decomposition (175%)
and algorithmic thinking (132%) also showed significant improvements, albeit
with comparatively smaller percentage gains.

Additionally, we examined the statistical correlation between the pretest
and posttest for each dimension separately. As presented in Table 4, a statistically
significant medium correlation is observed for the dimensions of abstraction, al-
gorithmic thinking and evaluation, according to Spearman’s method (.38 <p<.49,
2 <.05). In contrast, for decomposition and generalization, the null hypothesis
cannot be rejected using Spearman’s test (p> .05), indicating no statistically sig-
nificant correlation between the pretest and posttest for these dimensions.

Observation Data — Interpretation

Observation data during the STEM intervention and CT test-taking process were
recorded in a research diary. In this paper, we focus on a few key issues related to CT.
During the CT pretest, many participants reported that the questions were extreme-
ly complicated and difficult and that they were unsure how to approach them. They
appeared discouraged, with a tendency to abandon the CT questions. However, the
learners gradually became more engaged throughout the STEM lessons, approach-
ing progressively complex activities requiring computational thinking.
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For example, discussions and reflections were encouraged during STEM
tasks with questions such as: “How can we break the problem and solution into
smaller parts?”, “What do we know about this?”, “Which information is useful?”,
“What steps must we follow to solve this, and in what order?”, “Are our solutions
adequate, or can we improve them?”, and “Where else can we apply our solu-
tions?”. These questions helped foster a deeper understanding of computational
thinking and problem-solving strategies.

Opverall, the learners seemed to enjoy their progress and appeared more
confident in problem-solving. It is important to note that the participants were
not taught any of the Bebras CT questions during the intervention. Nevertheless,
after the intervention, when the participants took the same CT questionnaire
in the posttest, it was evident that they had adopted a computational thinking
approach. They viewed the questions as achievable challenges, believed that they
could solve most problems and demonstrated increased persistence, ultimately
solving more problems than before.

Discussion and Conclusions

Computational thinking is essential for adults but identifying an effective educa-
tional program to help them develop CT remains a challenge (Zapata-Rivera et
al., 2019). Furthermore, experts emphasize the need for research of adult learners’
CT, as studies focusing on older populations are limited (Cutumisu et al., 2019;
Kotzampasaki & Koulaouzides, 2024; Ortiz et al., 2023; Poulakis & Politis,
2021; X. Tang et al., 2020). This study aims to address this research gap by inves-
tigating the impact of a carefully designed and implemented STEM intervention
on the CT skills of adult learners.

Our action research is aligned with experts’ recommendations for CT
studies (Poulakis & Politis, 2021; X. Tang et al., 2020). Specifically: a) Bebras
items were used as they do not require any prior programming knowledge; pro-
gramming questions were intentionally excluded to consciously distinguish com-
puter science knowledge from the unique computational way of thinking about
problems and their solutions, whether specific or broad; b) Computer-based
tools were not used for administering the CT test; instead, we opted for printed,
colored questionnaires; ¢) A mixed-methods evaluation was employed, primarily
quantitative, but also incorporating qualitative data for a deeper understanding;
d) Our sample focused on Second Chance Schools learners, as they represent
adult learners with distinct characteristics and are highly relevant to adult educa-
tion. Furthermore, we were able to study an age range of 26...75 years, all with-
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out prior programming or computer science knowledge; ) Content validity and
internal consistency were assessed for reliability; and f) The research focused on
defining CT and its dimensions. Specifically, we successfully “measured” the five
dimensions both before and after the intervention, across three levels of difficulty.

Overall, we observed an improvement in the adult learners’ computa-
tional thinking because of the STEM intervention. Our results indicate that a
greater number of learners answered all the questions correctly after the STEM
lessons. Additionally, McNemar tests for equality of proportions, conducted on
nine closed-ended questions [1, 2, 3, 4, 5, 9, 10, 11] and open-ended question
6, reveal a statistically significant difference, suggesting that a higher percentage
of participants answered these questions correctly after the STEM intervention.
Three open-ended questions 7, 8, 12] were recoded and McNemar tests between
the pretest and posttest show a statistically significant improvement in solving
these questions, either by providing the best or second-best solution. Thus, for
all questions, a greater number of learners are expected to approach CT problems
more accurately after the STEM intervention, offering either the correct answer
or at least the second-best solution. Moreover, the significant correlation between
the number of correct answers in CT before and after the intervention potentially
reflects the effectiveness of the intervention in maintaining or improving the par-
ticipants’ performance.

The STEM lessons have also had a significant positive impact on the
number of questions participants answered correctly (pretest Mdn = 1, posttest
Mdn = 6). Additionally, there was a decrease in the abstention from answering
questions, with learners demonstrating an increased tendency to attempt to reply
to more CT questions after the STEM intervention. This improvement can be
further explained by our observational data, which reflects an increase in learner
confidence and engagement. In addition, despite the significant decrease in the
number of unanswered questions, the Spearman correlation results show that the
participants who had more “no answers” in the pretest tended to continue facing
difficulties in the posttest. This may suggest that these participants require more
targeted and personalized interventions to improve further their performance.

According to the Bebras calculation method, the overall CT score doubled
(213%), while the paired sample t-tests reveal a statistically significant difference.
Furthermore, Pearson’s test shows a medium correlation between the pretest and
posttest CT scores. We also identified two mathematical models that can estimate
the improvement in 25% of the cases (linear regression) or 32.4% (third-degree
polynomial), which is noteworthy, considering that it applies to a human science
mathematical formula where thinking patterns and behaviors are inherently com-
plex. Along with the other evidence, the highly statistically significant difference
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observed between pretest and posttest scores reinforces the conclusion that the
STEM intervention had a positive impact on the learners’ CT.

Regarding difficulty levels, paired sample t-tests indicate that we expect
greater performance after the STEM intervention at all CT levels. The percent-
age improvements for each difficulty level are as follows: easy (230%), medium
(265%), and difficult (176%). However, Pearson’s method reveals no correlation
between pretest and posttest scores for easy and difficult questions. To clarify,
although there is a statistically significant difference in mean scores, indicating
improved performance after the intervention, there is no evidence suggesting that
the participants’ performance on the easy pretest questions predicts their perfor-
mance on the easy posttest. In fact, we observed learners who scored extremely
low on the pretest achieving excellent scores on the easy questions after the STEM
lessons. Similarly, improved scores were expected on the difficult CT questions
after the intervention, but no significant correlation was found with the pretest
scores. On the one hand, this suggests that anyone could potentially solve dif-
ficult questions, regardless of their previous performance; on the other hand, we
must acknowledge that only a few participants attempted the difficult questions
on the pretest. For the medium difficulty level, performances on the pretest and
posttest are related, as indicated by Pearson’s correlation test. To illustrate, partici-
pants with higher CT scores on the medium-level questions in the pretest were
expected to achieve better outcomes on the same questions in the posttest.

In addition, a statistically significant improvement is observed across all
CT dimensions following the implementation of the STEM education program.
The percentages of improvement are as follows: generalization (239%), evalua-
tion (226%), abstraction (209%), decomposition (175%) and algorithmic think-
ing (132.24%). Pearson’s method indicates a medium correlation between the
pretest and posttest for algorithmic thinking, evaluation and decomposition.
This suggests that improvements in these CT dimensions were moderately linked
to the participants’ initial performance.

We sought to compare our qualitative findings with other studies involv-
ing adults, but we were unable to find previous research that aligns with our sam-
ple, method and analysis. Although wary of comparing different age groups, we
will refer to the study by Psycharis and Kotzampasaki (2019), which involved 115
Greek 5"-6™ grade students, as it follows a similar research method and analysis.
In that study, the students showed a statistically significant increase in their CT
performance on the Bebras Test after the implementation of a STEM inquiry-
based game. Specifically, their mean percentages of improvement were as follows:
generalization (624%), algorithmic thinking (622%), abstraction (578%), de-
composition (265%) and evaluation (221%). We observe that, except for evalu-
ation, where improvement is similar to our findings, the students demonstrated
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much greater percentages of improvement in the other dimensions. Interestingly,
the students showed statistically significant improvement only at the easy and
medium difficulty levels, whereas adult learners, with smaller mean improve-
ments, achieved statistically significant improvement at all difficulty levels.

In conclusion, we can affirm that the STEM intervention designed and
implemented for this action research has had a positive impact on the adult learn-
ers’ computational thinking (CT), encompassing all CT dimensions and levels
of difficulty. We argue that the STEM intervention helps learners gradually in-
ternalize the thought patterns of CT dimensions, enabling them to approach
problems with a computational way of thinking. We believe that the positive
correlation between CT, general skills and thinking styles (Durak & Saritepeci,
2018) is crucial for understanding the world, as Denning and Tedre (2019) high-
light, and furthermore, for gaining insight into how people think. It is important
to recognize that thinking is a multifaceted process and that the changes we have
observed in attitude and behavior should not be underestimated. The interpreta-
tion of CT results is closely tied to other research questions we aim to address,
which will be discussed in the following chapter on further research.

Further Research

This article presents the results of our intervention on adult learners’ (CT) as part
of a broader mixed-methods action research project. Interviews and additional
questionnaires were used to explore further research questions related to criti-
cal reflection, the potential for transformative learning, and the correlation with
CT (Kotzampasaki & Koulaouzides, 2024). By addressing these supplementary
questions, we aim to offer a deeper and more comprehensive understanding of
how adults apply computational thinking. We are convinced that further research
on CT-STEM in adult education is essential, particularly for learners in Second
Chance Schools, as the outcomes there carry significant implications.
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