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Abstract: Computational Thinking (CT) has attracted increasing international atten-
tion, particularly in relation to younger learners. However, as a fundamental cognitive 
process, CT is equally relevant to adults, and its development within this demographic 
warrants further investigation. STEM education, with its holistic and transdisciplinary 
orientation, is closely associated with CT and, if appropriately designed, can serve as 
a powerful framework for adult education. This paper reports on an action research 
project that explored the dimensions of CT in the context of STEM-based adult educa-
tion. For this purpose, a STEM intervention comprising eight interconnected scenarios 
was designed and implemented in Second Chance Schools (SCSs), whose students 
exemplify the essential characteristics of adult learners. A total of 48 trainees, aged 26 
to 75, across four classes in two SCSs in Athens, participated in the intervention. Data 
was collected through pre... and post-tests and analyzed quantitatively, supplemented 
by qualitative observations to support interpretation. The results revealed statistically 
significant improvements across all levels of difficulty and dimensions examined. Spe-
cifically, gains were observed in abstraction, algorithmic thinking, decomposition, gen-
eralization, and evaluation.
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Računarsko razmišljanje u obrazovanju 
odraslih: ishodi učenja STEM intervencije4

Apstrakt: Na međunarodnom nivou se sve više pažnje posvećuje računarskom razmi-
šljanju (u daljem tekstu: RR), posebno mlađih učenika. Međutim, RR je kao osnovni 
kognitivni proces podjednako važno i za odrasle, pa se njegov razvoj mora istraživati i u 
toj demografskoj grupi. Zahvaljujući svom holističkom i transdisciplinarnom pristupu, 
STEM obrazovanje je usko povezano sa RR i može biti idealno za obrazovanje odraslih, 
ukoliko se adekvatno osmisli. U ovom radu je predstavljeno akciono istraživanje u kojem 
su ispitane dimenzije RR u kontekstu STEM obrazovanja odraslih. Za potrebe istraži-
vanja je osmišljena STEM intervencija koja se sastojala od osam međusobno povezanih 
scenarija. Intervencija je sprovedena u školama druge šanse (ŠDŠ) jer se njihovi polaznici 
odlikuju ključnim karakteristikama odraslih učenika. U intervenciji je učestvovalo uku-
pno 48 polaznika, uzrasta od 26 do 75 godina, koji su pohađali četiri odeljenja u dve ŠDŠ 
u Atini. Podaci prikupljeni pre i nakon intervencije kvantitativno su analizirani, dok su 
kvalitativna zapažanja iskorišćena kao pomoć u tumačenju rezultata. Statistički značajna 
poboljšanja su uočena nakon STEM intervencije na svim proučavanim nivoima težine i 
dimenzijama. Uočen je napredak u apstrakciji, algoritamskom razmišljanju, razlaganju, 
generalizaciji i evaluaciji.

Ključne reči: obrazovanje odraslih, računarsko razmišljanje, škole druge šanse, STEM 
obrazovanje

Introduction

Computational thinking (CT) is a crucial skill for adult learners, as it fosters 
problem-solving abilities that are applicable in various professional and every-
day contexts. CT equips adults with the tools to approach complex challenges 
systematically, promoting skills like decomposition, abstraction, and algorithmic 
thinking (Yadav et al., 2017). Although adult learners need to develop or improve 
their computational thinking skills, challenges often arise due to the absence of 
suitable educational methods that consider their specific needs and motivations 
(El Mawas et al., 2021).To address the aforementioned challenges, we designed 
a small-scale STEM intervention for adult learners enrolled in Second Chance 
Schools (SCS) in the Prefecture of Athens, Greece. The intervention was in-
formed by both adult education principles and the pedagogical foundations of 
STEM education.

4	 Istraživanje predstavljeno u ovom radu zasnovano je na istraživanju koje E. A. Kotzampasaki sprovodi u okviru 
rada na svojoj doktorskoj disertaciji pod mentorstvom G. A. Koulaouzides.
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Computational Thinking

Computational Thinking (CT) is conceptualized as a cognitive process that fa-
cilitates the automatization of certain aspects of human thought (Selby & Wool-
lard, 2014). Wing (2006) pointed out that CT, as a process based on the fun-
damental concepts of computer science, might contribute as a way of thinking 
and approaching several critical issues in problem solving, and might lead us in 
understanding both human behavior and systems design, which is why CT must 
be recognized as one of the fundamental life skills. Some years later, Wing (2017) 
explained that computational thinking was “the thought processes involved in 
formulating a problem and expressing its solution(s) in such a way that a com-
puter—human or machine—can effectively carry out.”

Although there is no universally accepted definition of CT, X. Tang and 
associates (2020) attempted to categorize some of the most common definitions. 
They distinguish between those emphasizing programming or computer science 
concepts (Brennan & Resnick, 2012; Denner et al., 2012; Weintrop et al., 2016) 
and those focusing on solving real-world problems through a combination of 
knowledge and methods from various fields (CSTA & ISTE, 2011; Selby & 
Woollard, 2014; Yadav et al., 2014). Moreover, in a more comprehensive ap-
proach, Denning and Tedre (2019, p. 4) explained that CT “is the mental skills 
and practices for (a) designing computations that get computers to do the jobs 
for us and (b) explaining the interpreting the world as a complex information 
processes […] the explanation aspect reflects the science tradition of computing 
in which people seek to understand how computation works and how it shows 
up in the world.” However, in addition to efforts to define computational think-
ing, considerable debates about the main CT dimensions are under way in the 
research and educational community. Ling, et al. (2018) analyzed the relevant 
literature and concluded it by separating CT dimensions from CT skills. They 
opted for the five CT dimensions developed by Selby & Woollard (2014) that 
have received considerable acceptance:

	• Abstraction: According to Wing (2011), abstraction is a crucial, high-
level thinking process in computational thinking, playing a key role in 
identifying common properties and excluding non-essential data, there-
by enhancing the ability to manage complexity. In other words, abstrac-
tion serves as a fundamental tool for handling complexity, enabling the 
development and understanding of simpler models to achieve a clearer 
comprehension of complex phenomena (Cook et al., 2012).

	• Algorithmic Thinking: According to Hu (2011), computational think-
ing involves a step-by-step determination of a functional process. He 
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points out that individuals who study models and algorithms develop 
skills that can enhance critical thinking and benefit from them on mul-
tiple levels.

	• Decomposition: Decomposition involves an initial assessment of a prob-
lem’s complexity by breaking it down into smaller, more manageable 
components, making it easier to solve (Djambong & Freiman, 2016). It 
is about “…finding structure in the problem and determining how the 
various components will fit together in the final solution” (Csizmadia et 
al., 2019, p. 45).

	• Generalization: This dimension involves recognizing the value of a solu-
tion in solving similar or other real-world problems, as well as reusing 
the solution either as part of another solution or in its original form 
(Csizmadia et al., 2019; National Research Council, 2011; Selby & 
Woollard, 2014).

	• Evaluation: This dimension of computational thinking involves imple-
menting, representing and assessing previous phases of problem-solving 
efforts (Fogli et al., 2017). Evaluation includes exploring alternatives, 
comparing options, and considering how these alternatives might func-
tion in real-life situations (Csizmadia et al., 2019).

The aforementioned dimensions of computational thinking have been ap-
plied in various research studies (Csizmadia et al., 2019; Ling et al., 2018; X. 
Tang et al., 2020) and form the basis of our approach in this study. At this point, 
the following question arises: “How can we actually foster computational think-
ing?”. In our opinion, CT-STEM may be an answer.

Computational Thinking in STEM

Computational Thinking in STEM (CT-STEM) refers to the development of 
computational thinking skills through STEM education. It’s important to rec-
ognize that

STEM (Science, Technology, Engineering and Mathematics) edu-
cation is not merely the accumulation of knowledge across scientific 
fields, but rather a holistic, transdisciplinary approach that moves 
beyond isolated specializations. It emphasizes the study of connec-
tions, focuses on interrelated processes, and does not concentrate 
on individual phenomena (Psycharis et al., 2018 as cited in Kot-
zampasaki & Koulaouzides, 2024, p. 183).
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STEM education fosters the development of scientific, mathematical and 
technological practices, concepts, and insights, which enable the resolution of re-
al-world challenges and complex questions (Man et al., 2016). Integrating com-
putational thinking into STEM education promotes interconnectedness across 
scientific fields and enhances math and science lessons to reflect current profes-
sional practices (X. Tang et al., 2020). Swanson, et al. (2019) analyzed interviews 
with CT-STEM researchers and proposed a taxonomy with four key CT-STEM 
practices: data handling, simulation and modeling, systems thinking, and com-
putational problem-solving. Research shows a positive impact of both STEM 
education and game-based learning on computational thinking; however, as dis-
cussed in the following paragraph, most of these studies have been conducted 
with younger students (Fidai et al., 2020; Lu et al., 2023; Ma et al., 2023).

Computational Thinking Evaluation: Target Populations and Pools

Interest in computational thinking (CT) has grown significantly among research-
ers, and recent years have seen the publication of meta-analyses on the topic. 
Literature reviews and meta-analyses, such as those by X. Tang and associates 
(2020) including 96 studies; Cutumisu and associates (2019), reviewing 39 em-
pirical studies; and Poulakis and Politis (2021), examining 82 studies, all reach a 
common conclusion: most CT research focuses on primary and secondary school 
students, with limited work addressing adult learners. In the few studies involv-
ing adults, the participants were typically college students.

Another notable finding is that most CT evaluations focus narrowly on 
computing or programming skills, while CT itself encompasses a broader set of 
cognitive skills. X. Tang and associates (2020) propose several directions for fu-
ture research: a) conducting more studies with older age groups, such as high 
school students, college students, vocational trainees, and learners in non-tradi-
tional educational settings; b) basing studies on clear CT definitions and explor-
ing connections across different thematic areas; c) incorporating qualitative data 
like interviews or focus groups to deepen understanding of CT; d) ensuring reli-
ability and validity in assessments; e) recognizing the unique aspects of CT that 
distinguish it from programming or computing; and f ) designing CT assessment 
tools adaptable across various platforms to allow comparisons. Poulakis and Politis 
(2021) echo these recommendations, noting the lack of independent, validated 
evaluation tools for all age groups and advocating multi-method evaluations that 
include quantitative research as the most effective approach. A critical issue in CT 
research is the need for reliable assessment tools to measure whether CT skills are 
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developed or improved. CT assessments can generally be categorized by their ap-
proach: a) assessments based on specific programming platforms, b) psychometric 
or scale-based tools, and c) multi-method approaches (Poulakis & Politis, 2021).

In our study, we focus on the internationally recognized Bebras CT com-
petition (see bebras.org) to collect our main quantitative data, and we explain 
our choice in detail. Bebras questions are designed to assess cognitive skills useful 
in solving problems across various domains (X. Tang et al., 2020) and are based 
on the application of CT skills in daily life (Román-González et al., 2019). X. 
Tang and associates (2020) note that Bebras is widely used and valued by re-
searchers due to its distinct advantages: a) no electronic devices are required; b) 
no prior knowledge of computers or programming is necessary; c) the questions 
are designed as riddles, brainteasers, or logic puzzles; d) the questions are avail-
able at varying difficulty levels; and e) each question is mapped to specific CT 
dimensions, aligning with Selby and Woollard’s (2014) CT framework. Research 
suggests that Bebras questions provide a high-quality basis for CT assessment 
(Dagiene & Stupuriene, 2016), while psychometric analyses have been conduct-
ed to further confirm their validity (Araujo et al., 2019; Hubwieser & Mühling, 
2015). Although Bebras competitions are primarily aimed at students under 18, 
researchers, such as López and García-Peñalvo (2016), have successfully adapted 
Bebras questions to assess CT in higher education students. Similarly, Lockwood 
and Mooney (2018) analyzed Bebras tasks and concluded that they were appro-
priate for college-level students as well.

CT and Adult Learners

Research on computational thinking (CT) specifically related to the general adult 
population remains limited (Kotzampasaki & Koulaouzides, 2024). A published 
content analysis of relevant research verified that there is only very limited focus 
on adult learners aside from educators or higher education students in the 336 
studies published between 2006 and 2018 (K. Y. Tang et al., 2020). However, 
higher education students and undergraduate students, in particular, may not be 
generally classified as “adult learners” given the common understanding that they 
do not necessarily exhibit the key characteristics of adult learners, since adult-
hood is a complex concept linked to self-definition, social roles and social accept-
ance (Hill et al., 2023; Koulaouzides, 2019).

We should, however, take into consideration findings from research that 
examined computational thinking beyond schooling. For example, Lafuente-
Martínez and associates (2022) attempted to create a CT test for adults, conduct-
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ing reliability verification, validity, and factor analysis to develop a one-dimen-
sional model focusing on algorithmic thinking (Algorithmic Thinking Test for 
Adults ... ATTA). However, we were unable to identify any published studies that 
utilized this tool. Moreover, Zapata-Rivera et al. (2019) studied ten educators and 
ten adult learners and made recommendations for programming training to sup-
port digital learning tools like alarms and notifications. This study revealed that 
adults primarily need support and training in CT aspects that meet lifelong learn-
ing demands, such as practical skills and time management, rather than computer 
use or programming (Zapata-Rivera et al., 2019). El Mawas et al. (2021) tested 
the adaptive educational game “AutoThinking” on 12 postgraduate students in 
a digital learning master’s program. The “AutoThinking” labyrinth game uses 
flow charts and block programming; the study included questions assessing CT 
knowledge, such as “What is debugging?” and “What is a sequence?”. The results 
suggest that the AutoThinking game effectively increased the students’ knowl-
edge of concepts related to computational thinking and computing (El Mawas 
et al., 2021). Moreover, Gao (2020) studied students in higher vocational educa-
tion in China, finding that game-based learning and CT improved their learning 
interest and engagement; he also highlighted the need for studies involving older 
age groups. Similarly, Kazimoglu (2020) examined the effectiveness of a “serious 
game” for 151 first-year computer science students, noting its positive impact 
on motivation to learn programming and confidence in using CT skills. Serious 
games are “digital games and equipment with an agenda of educational design 
and beyond entertainment” (Park et al., 2012, as cited in Pliasa & Fachantidis, 
2021, p. 619) and are utilized in educational research, such as that by Pliasa and 
Fachantidis (2021), because of their potential to develop skills, achieve cognitive 
objectives and modify attitudes, benefiting both typical and autistic students.

Methodology: Choices and Concerns

Research Gap and Research Questions

The above-mentioned studies revealed a significant gap in CT studies focusing 
on adult learners, particularly those without prior computing or programming 
knowledge. Therefore, we decided to focus on adult learners with low qualifica-
tions and examine what happens in formal education environments when they are 
given a second opportunity to participate in education (Cutumisu et al., 2019; 
Kotzampasaki & Koulaouzides, 2024; Ortiz et al., 2023; Poulakis & Politis, 2021; 
X. Tang et al., 2020). Our decision was also informed by the work of Ortiz and 
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associates (2023), who point out the importance of research related to ways of 
reducing the digital divide among adults participating in basic literacy programs.

In Greece, this opportunity is offered to the general adult population in 
the Second Chance Schools (SCSs). The SCSs in Greece are attended by adults, 
who had dropped out of school before completing their nine-year compulsory 
education. SCSs aim to support the learners’ cultural, economic and social de-
velopment, and self-confidence to help them enter or advance in the workforce 
by teaching them essential skills (Koutouzis et al., 2023). SCS students generally 
exhibit the main characteristics of adult learners; they face constraints such as 
time limitations, work, and family responsibilities, wherefore the SCS curricula 
address their diverse needs by employing adaptable educational tools to make 
education a multidimensional endeavor. Our main research question related to 
the research presented in this paper is:

	• What is the impact of a designed STEM didactic intervention on the 
dimensions of computational thinking on Second Chance School adult 
students?

and more specifically:

	• What is the impact of the STEM intervention on each of five CT di-
mensions (abstraction, decomposition, algorithmic thinking, evalua-
tion, generalization)?

	• What is the impact of the STEM intervention on CT’s varying levels of 
difficulty (easy, medium, difficult)?

Procedure

To answer the research questions, we conducted a mixed-method action research 
study. We designed a STEM intervention featuring a sequence of interconnected 
educational scenarios centered on common transdisciplinary concepts. The inter-
vention included seminars with a variety of activities, such as educational robotics, 
physical computing, micro-construction, experiments and simulations, alongside 
diverse teaching techniques. For instance, participants worked with the Edison 
robot, micro:bit, and various extensions, such as motors, sensors and LEDs, while 
also engaging in chemistry experiments and simulations, in order to explore the 
concept of “color” from multiple perspectives. Detailed information on the design 
and content of the STEM intervention will be published in a separate article.

Our STEM intervention was implemented four times at the two SCSs in 
Greece. The selection of the SCSs was guided by their expressed willingness to 
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participate and the practical feasibility of integrating the intervention in their 
curriculum. We secured the necessary permissions in communication with these 
schools and ensured that the study was implemented in a manner that respected 
their schedules and supported their smooth operation.

Participants first completed the Bebras CT pretest that is explained in the 
Instruments section. This was followed by the implementation of the interven-
tion consisting of eight STEM educational scenarios. The seminars were gener-
ally three hours long and conducted once a week, unless there were scheduling 
conflicts with the SCSs, such as participation in other activities or an educational 
visit, in which case they were held bi-weekly or as two-hour sessions. Some of 
the didactic scenarios required less time and it was possible to implement two of 
them within a three-hour seminar. In each group, the educational intervention 
required between 16 to 19 teaching hours, with variations due to the available 
time in the SCSs, adjustments to the specific needs of each group, the number of 
learners, possible absences and the time required for brief repetitions. Implemen-
tation of the intervention lasted approximately three months in each SCS. Two 
weeks after the intervention was completed, the participants completed the post 
test, along with additional questionnaires addressing various research questions. 
To accommodate reading difficulties faced by some SCS adult learners, we read 
all the questions out loud during the process.

Our experimental research primarily combined quantitative correlation 
and descriptive methods through pretests and posttests. We also included quali-
tative data from observations during the intervention and responses to CT tests, 
documented in a research diary.

Population and Sample

Forty-eight adult learners aged 26...75 participated voluntarily in our interven-
tions. At the start, we observed that most (41.7%) belonged to the 40...49 age 
group, followed by 33.3% in the 50...59 age group; a smaller proportion (20.8%) 
were in the 30...39 age group, one participant (2.1%) belonged to the 18...29 
age group, while another (2.1%) belonged to the 70+ age group. The estimated 
average age of the trainees stood at approximately 45.85 years, which may differ 
from the actual average, which could only be determined if we had exact age data 
for each participant. Twenty-seven (56.25%) of the participants were women and 
21 were men (43.75%). While the findings may not be broadly generalized to all 
populations, they may be applicable to those with similar sociocultural character-
istics, warranting further investigation in comparable settings.
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Instruments

To assess the CT dimensions, we designed a questionnaire based on the Bebras 
CT competition. We selected questions from the United Kingdom’s 2015...2018 
contests, which were developed in collaboration with Oxford University and 
Google, with contributions from global experts. Table 1 provides a list of ques-
tions along with references to detailed descriptions, answers and clarifications. 
The selection process involved three phases, and they were conducted with the 
assistance of experts, educators, and SCS students. The following criteria were 
used to select the questions: (a) questions needed to be evenly distributed across 
difficulty levels, (b) they should not require complex mathematical calculations, 
(c) they should not assume prior programming knowledge, and (d) the set of 
questions should sufficiently represent the five CT dimensions.

A native speaker fluent in both English and Greek reviewed the translation 
and the questions were piloted. The final selection included 12 questions cover-
ing all five CT dimensions across three levels of difficulty, comprising eight mul-
tiple-choice and four open-ended questions. Cronbach’s alpha at pretest (.844) 
indicated a reliable test with high internal consistency; however, posttest Cron-
bach’s alpha decreased (.532), potentially due to the participants’ newly acquired 
knowledge, shifts in thinking, or changes in behavior or engagement. Further 
research could clarify these changes.

Ethical Issues

The research was approved by the Ethics and Research Committee of the Hellenic 
Open University (51/2024). Furthermore, it received approval for implementation 
in the Second Chance Schools from the General Secretariat of Vocational Educa-
tion, Training, and Lifelong Learning, the competent authority of the Greek Min-
istry of Education. Participants voluntarily participated in the study and provided 
their consent by signing a Declaration of Consent after being fully informed.

Findings

Analysis of the 12 CT Questions

We aimed to examine the potential relationship between pretest and posttest 
performance on the responses to the 12 Computational Thinking (CT) test ques-
tions (categorized as correct, no answer, or incorrect) (Table 1) by conducting a 
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chi-square (χ²) test in SPSS. However, the χ² test could not be applied because its 
assumptions were violated. Specifically, the expected frequencies in some cells of 
the 3x3 contingency table were below the threshold of 5, a condition that under-
mines the validity of the test. This violation occurs because the χ² test relies on 
sufficient sample sizes in each cell to ensure accurate statistical inference. Applica-
tion of the test under these conditions could lead to biased or unreliable results. 
To address this issue and maintain the robustness of the analysis, we combined 
the adjacent response categories “no answer” and “incorrect”. This approach is 
commonly used to meet statistical assumptions while preserving the interpret-
ability of the data. All variables were recoded (1 = “correct”, 0 = “incorrect or no 
answer”) and McNemar’ s tests for equality of proportions were performed to as-
sess the independence of two correlated samples. The necessary prerequisites for 
conducting the McNemar test were met, as it involves a pair of binary variables 
for ten questions (excluding Q12 and Q8, which require a different approach; 
further explanations are provided five paragraphs below). The null hypothesis 
assumes that there is no difference in the proportions of answers between the 
pretest and posttest. For questions 1, 2, 3, 4, 5, 6, 9, 10 and 11, McNemar’ s test 
(N = 48, p <.05) led to rejection of the null hypothesis. This suggests a significant 
difference between pretest and posttest responses. Considering the data in Table 
1 as well, it may be inferred that a higher percentage of learners are expected to 
provide correct answers to these CT questions after the STEM intervention.

Eight of the questions were multiple-choice and not analyzed further. 
However, questions 6, 7, 8 and 12 were open-ended, warranting additional analy-
sis. This is crucial for examining not only participants who provided fully correct 
answers but also those whose responses closely approximate the correct solution.

Question 6 is considered correct only if learners determine the correct 
order of four colors, achieved by blending colors and combining various data. 
Only one out of 48 learners provided a completely correct answer in the pretest, 
whereas this ratio improved to one out of three in the posttest (Table 1). All 
incorrect answers were analyzed since even a minor error during the solution 
process results in an incorrect color. Notably, two learners in the pretest and 
four in the posttest managed to correctly identify three out of four colors in the 
correct order, suggesting that they possess the logical approach required to solve 
Question 6. Among those who answered incorrectly, 14.6% of participants in 
the pretest demonstrated reasoning far removed from the problem-solving logic, 
a percentage that decreased to 8.3% in the posttest.

The percentage of correct answers to Question 7 more than doubled 
(18.8% in the pretest, 41.7% in the posttest). However, this is the first question 
where the proportion of incorrect answers increased after the intervention (25% 
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in the pretest, 47.9% in the posttest), although a larger number of participants 
provided an answer (no answer: 27% in the pretest, 5% in the posttest). Despite 
the increase in correct answers, the McNemar Test (N = 48, p = .007, binomial 
distribution) suggests that we should adopt the null hypothesis, indicating no 
significant difference in the proportions of answers.

To explain the rise in incorrect answers to Question 7, and considering 
that the question was open-ended, we analyzed all the incorrect responses. We 
found that some participants approached the problem with the correct reasoning 
but narrowly missed the exact solution. Specifically, they arrived at the correct 
answer for a satisfaction level of 13, whereas the precise answer was for a satis-
faction level of 14. As a result, they provided a second-best solution. When we 
combined those who gave either the best or second-best solution, the proportion 
increased from 27.1% in the pretest to 70.8% in the posttest. We recorded the 
data (1=”best or 2nd best solution”; 0 = incorrect), and the result of the McNe-
mar test (N = 48, p <.001, binomial distribution) indicates a statistically signifi-
cant difference between the pretest and posttest. Therefore, it may be concluded 
that learners were more likely to approach the solution more accurately after the 
STEM intervention, providing either the best or second-best solution.

Question 8 was also open-ended, requiring participants to identify the 
least expensive solution in a path graph. No participants provided the correct 
answer in the pretest, but 43.8% succeeded in finding the exact solution in the 
posttest. The most cost-effective solution is a path with a length of 41, although 
many participants identified the second-best path (42). Despite an increase in 
incorrect answers, more participants were closer to the correct solution. The com-
bined proportion of those providing either the correct or the second-best solution 
was 12.5% in the pretest, which improved to 72.9% in the posttest.

Similarly, no participant provided the correct answer to the open-ended 
Question 12 in the pretest. The answer is considered absolutely correct if partici-
pants decode the Kix-Code and identify the four letters or numbers in the correct 
order. Analysis of the incorrect answers reveals that 2% of participants provided 
the best or second-best solution (three or four correct elements) in the pretest, 
while this percentage increased to 27% in the posttest.

As mentioned in the first paragraph of this section, the McNemar test 
should not be applied to Questions 8 and 12 using the codes “correct” and “in-
correct or no answer,” since no one provided the correct answer in the pretest. A 
new recoding scheme was applied for more statistically reliable results: “1 = best 
or 2nd best solution” and “2 = incorrect or no answer.” For both questions, the 
McNemar test results (N = 48, p <.001, binomial distribution) show that the null 
hypotheses are rejected. Data in Table 1 lead to the conclusion that a higher pro-
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portion of participants are expected to provide the best or second-best solutions 
to Questions 8 and 12 after the STEM intervention.

Table 1. Outcomes of CT Tests, CT dimensions per question and McNemar
No answer Correct Incorrect

n % n % n %
Q1: Balls Pretest 10 20.80% 13 27.10% 25 52.10%
(A) AB, AL, EV Posttest 4 8.30% 34 70.80% 10 20.80%

McNemar: p = .004
Q2: Blossom Pretest 22 45.80% 10 20.80% 16 33.30%
(B) EV, GE Posttest 2 4.20% 39 81.30% 7 14.60%

McNemar: p <.001
Q3: Five Sticks Pretest 13 27.10% 25 52.10% 10 20.80%
(B) AB, AL, DE Posttest 0 0.00% 39 81.30% 9 18.80%

McNemar: p = .004
Q4: Superpower Family Pretest 20 41.70% 15 31.30% 13 27.10%
(A) AB, AL, DE, EV Posttest 3 6.30% 33 68.80% 12 25.00%

McNemar: p = .001
Q5: Beaver Lunch Pretest 21 43.80% 6 12.50% 21 43.80%
(B) AB, DE, EV, GE Posttest 0 0.00% 35 72.90% 13 27.10%

McNemar: p <.001
Q6: Theater* Pretest 36 75.00% 1 2.10% 11 22.90%
(B) AL, DE, EV Posttest 23 47.90% 16 33.30% 9 18.80%

McNemar: p <.001
Q7: Soda Shop* Pretest 27 56.30% 9 18.80% 12 25.00%
(B) AB, AL, EV Posttest 5 10.40% 20 41.70% 23 47.90%

McNemar: p = .007
(For the best or 2nd best solution McNemar p <.001)

Q8: Toll roads* Pretest 32 66.70% 0 0.00% 16 33.30%
(B) AB, AL, EV, GE Posttest 5 10.40% 21 43.80% 22 45.80%

(For best or 2nd best solution McNemar: p <.001)
Q9: Gifts Pretest 40 83.30% 1 2.10% 7 14.60%
(C) AL, EV Posttest 10 20.80% 26 54.20% 12 25.00%

McNemar: p <.001
Q10: Bowl Factory Pretest 37 77.10% 1 2.10% 10 20.80%
(C) AB, AL, DE, EV Posttest 21 43.80% 7 14.60% 20 41.70%

McNemar: p = .031
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No answer Correct Incorrect
n % n % n %

Q11: Icon Image 
Reduction Pretest 43 89.60% 3 6.30% 2 4.20%

(C) DE, EV, GE Posttest 21 43.80% 16 33.30% 11 22.90%

McNemar: p <.001

Q12: Kix Code* Pretest 44 91.70% 0 0.00% 4 8.30%

(C) AL, GE Posttest 23 47.90% 13 27.10% 12 25.00%

(For the best or 2nd best solution McNemar: p <.001)

Mc Nemar N=48 Binominal distribution
n = number of participants who provided each type of response.
(A)= Easy, (B)= Medium, (C)= Difficult
Abstraction (AB), Algorithmic Thinking (AL), Decomposition (DE), Generalization 
(GE), Evaluation (EV)
*Open-ended questions
For a more detailed description of questions with answers and clarifications see Blokhuis 
et al. (2015), Blokhuis et al., (2016), Blokhuis et al., (2017), Blokhuis et al., (2018).

Table 1 also provides statistical data on the performance of the 12 CT 
test questions before and after the intervention. Notably, there is an observed 
improvement in correct responses across all CT questions following the STEM 
learning program. For example, only 20.8% of participants answered Q2 cor-
rectly in the pretest, compared to 81.3% in the posttest. Figure 1 reveals that a 
greater number of participants answered correctly across all questions after the 
STEM intervention, without exception.

Figure 1. Number of Participants Who Correctly Answered Each Question
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Further Analysis of the Number of Correct CT Answers

To conduct a more in-depth analysis, we calculated the number of correct an-
swers provided by each participant and applied both tests. For the variables 
“number of correct answers in the pretest” and “number of correct answers in 
the posttest”, a paired-sample t-test was considered to assess the equality of the 
two means. While the t-test assumptions appeared to be satisfied in terms of 
quantitative variables, sample derivation from the same population and the as-
sumption of normality based on the Central Limit Theorem, the results of the 
Shapiro-Wilk test (p <.001 for the pretest, p = .036 for the posttest) indicated that 
the assumption of normality was violated. Consequently, a Wilcoxon Signed-
Rank Test was conducted, revealing a statistically significant difference between 
the two measurements (z = −5.795, p <.001). Specifically, the median number of 
correct answers increased from Mdn = 1 in the pretest to Mdn = 6 in the posttest, 
with positive ranks (N = 44) demonstrating that the STEM intervention had a 
substantial positive effect on the participants’ ability to provide correct answers.

Additionally, the mean number of correct answers increased from M = 
1.75 (pretest) to M = 6.23 (posttest), with a mean improvement of 4.48 correct 
answers (SD = 2.41). This demonstrates that the STEM intervention had a sub-
stantial positive effect on the participants’ ability to provide correct answers. A 
line graph of the number of correct answers, with the Standard Error of the Mean 
(SEM = 0.35 for pretest and SEM = 0.4 for posttest), is presented in Figure 2.

Figure 2. Number of Correct Answers with the Standard Error of the Mean (SEM)
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posttest performance corresponds to 356% of the pretest performance in terms of 
group success. It is important to note that these percentages do not account for the 
improvement achieved by participants who provided second-best solutions after 
the intervention, wherefore the actual improvement is likely even more substantial.

The Spearman Rank Correlation Coefficient was used to evaluate the re-
lationship between the number of correct answers in CT before and after the 
intervention, as the variables did not follow a normal distribution. The results 
indicate a significant positive correlation, ρ (46) = .374, p = .009. This finding 
suggests that the participants who performed well before the intervention tended 
to perform well afterwards.

Abstention Rate

This section examines the abstention rate, focusing on the number of questions 
each participant chose not to answer. Figure 3 provides a visual representation of 
this data. Before the intervention, only two participants answered all questions, 
whereas this number increased to ten after the intervention. Moreover, 18 partici-
pants left between nine and 12 questions unanswered in the pretest, while in the 
posttest, no participant left more than eight questions unanswered.

Figure 3. Number of Unanswered Questions
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posttest” were met, as the Shapiro-Wilk test (p <.023 for the pretest, p = .001 for the 
posttest) revealed non normality. The results of the Wilcoxon Signed-Rank Test (z 
= −5.66, p <.001) revealed a statistically significant difference between the two vari-
ables. Specifically, there was a significant decrease in the number of “unanswered 
questions” in the posttest compared to the pretest. The negative ranks (N = 42) 
indicated that most participants had fewer unanswered questions after the STEM 
intervention. The median number of unanswered questions decreased from Mdn = 
7 in the pretest to Mdn = 2 in the posttest. These findings indicate that learners are 
significantly more likely to attempt answering CT questions after STEM lessons.

Additionally, a t-Test was conducted to confirm the findings, as the t-test 
is known to be robust to violations of normality in larger samples. The t-test re-
sults (t[47] = ...10.40, p <.001) reveal a highly significant difference between the 
number of unanswered questions in the pretest (M = 7.19, SD = 3.44) and the 
posttest (M = 2.44, SD = 2.14). These results further support the robustness of 
the t-test despite the violation of normality and confirm the observed improve-
ment following the STEM intervention.

A Spearman’s correlation was conducted in order to explore the correlation 
between pretest and posttest abstention. The results reveal a significant positive 
relationship between the total number of unanswered questions in the pretest and 
the posttest, ρ(46)= .451, p = .001. Participants who had more “no answers” in 
the pretest tended to have more “no answers” in the posttest as well.

Calculation of Performances According to Bebras

Evaluation of CT performance requires calculation of the score based on the Bebras 
competition’s scoring rules for the 12 questions, given that Bebras questions are 
used in this study. As shown in Table 2, the three levels of difficulty yield different 
point values (zero, positive, or negative). Additionally, a bonus starting point must 
be applied to the scoring system to ensure that negative final scores are impossible.

Table 2. Information for Score Calculation According to the Bebras 
Competition

“Incorrect” 
Points

“No Answer” 
Points

“Correct” 
Points

Questions Start 
Points

Maximum 
Points

(A) Easy 0 0 6 1, 2, 3, 4 0 24
(B) Medium -2 0 9 5, 6, 7, 8 8 36
(C) Difficult -4 0 12 9, 10, 11, 

12
16 48

Total score 24 132



72	 Kotzampasaki A. Evangelia, Koulaouzides A. George

For the variables “Bebras score pretest” and “Bebras score posttest,” the 
Shapiro-Wilk test revealed non-normality for the pretest scores (p = .001), where-
as the posttest scores were normally distributed (p = .15). A Wilcoxon Signed-
Rank Test was conducted for these variables, with the results (z = ...5.97, p <.001) 
indicating a significant increase in the participants’ scores on the CT test fol-
lowing the intervention (z = ...5.97, p <.001). The median score on the Bebras 
measuring score was Mdn = 30 before the intervention and increased to Mdn = 
64 after the intervention. The positive rank (N = 44) shows that the participants 
scored higher in the posttest compared to the pretest and the negative rank (N = 
0) shows that none of the participants scored lower after the intervention.

The mean pretest scores (M = 31.71, SD = 9.98) and posttest scores 
(M = 67.50, SD = 24.97) show that both the mean and median scores more than 
doubled after the intervention.

Spearman’s correlation was conducted to explore the correlation between 
the pretest and posttest CT scores according to Bebras. The results revealed a 
significant positive relationship between the pretest and posttest scores, ρ 
(46) = .492, p <.000. Participants who performed better in the pretest tended to 
perform better in the posttest as well.

In developing a mathematical model to analyze the correlation between 
the variables, a simple linear regression was found to provide a clear and inter-
pretable equation, F(1,46) = 15.35, β = 0.500, p = .000. The R2 was 0.250, indi-
cating that the Bebras score pretest explained approximately 25% of the variance 
in the Bebras score posttest. The regression equation was:

[Bebras score posttest] = [27.881] + 1.25 [Bebras score pretest]

This implies that the predicted Bebras score on the posttest increases by 
approximately 1.25 points for each 1-point increase in the Bebras score on the 
pretest. Confidence intervals indicate that we can be 95% certain that the slope 
to predict the learners’ scores on the Bebras test after the STEM intervention, 
based on their scores before the intervention, lies between 0.608 and 1.891.

In addition, the possibility of more complex relationships was explored 
and a third-degree polynomial model explained 32.4% of the variance (R² = .324, 
p <.001). The polynomial model was found to be statistically significant, with 
F(3, 44) = 7.015, β = 0.211, p <.001. While this model showed an improvement 
in explaining the variance, it includes more terms and is less straightforward in 
interpreting the results. Therefore, we present the equation but will not elaborate 
this model further.

[Posttest]=−7.748+1.764×[Pretest]−0.0275×[Pretest]2+0.0001×[Pretest]3
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Difficulty Level Scores and Improvement in CT

The function for calculating CT scores at each difficulty level follows the Bebras 
scoring rules, as outlined in Table 2. Table 3 presents the mean scores for each 
difficulty level before and after the intervention, along with the corresponding 
percentage increases in performance. The analysis demonstrates significant im-
provements across all levels of difficulty: a 230% increase at the easy level, a 
265% improvement at the medium level, and a 176% increase at the difficult 
level. Overall, the participants achieved a 213% improvement in their mean per-
formance across all levels combined.

Table 3. Difficulty Level Scores According to the Bebras Calculation method
N=48 Shapiro-Wilks Mean score Percentage Mean 

IncreasePretest Posttest Pretest Posttest

Easy p < .001 p <.001 7.88 18.13 230.08%

Medium p = .021 p =.021 8.50 22.46 265.24%

Difficult p <.001 p = .030 15.33 26.92 175.60%

Total 31.71 67.5 212.87%

A more detailed analysis was conducted for each difficulty level (easy, me-
dium, difficult) to assess the statistical significance of the differences between 
pretest and posttest scores, as well as the correlations between them. According 
to the data presented in Table 3, the results of the Shapiro-Wilk test indicate that 
the distribution is not normal at any level of difficulty, both in the pretest and the 
posttest. Therefore, the most appropriate test for analysis is the Wilcoxon Signed-
Rank Test and Spearman’s correlation.

Easy Level: A Wilcoxon Signed-Rank Test (z = −5.36, p <.001) indicates 
that scores on easy CT questions were significantly higher in the posttest than 
in the pretest. The median score on the “easy” questions posttest was Mdn = 95, 
compared with Mdn = 84 for the pretest. These results suggest that the partici-
pants showed significant improvement in answering the easy CT questions after 
the STEM intervention. However, the Spearman’s correlation rank test shows that 
there is no significant relationship between these variables, rs (46) = .149, p = .313.

Medium Level: Similarly, a Wilcoxon Signed-Rank Test (z = −5.73, p 
<.001) reveals that scores on medium level questions were significantly higher 
in the posttest than in the pretest. The median score on the medium level ques-
tions after the STEM intervention was Mdn = 75, compared to Mdn = 65 before 
the intervention. This indicates that the intervention had a positive effect on 
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the participants’ CT performance on medium level questions. A Spearman’s cor-
relation was conducted to evaluate the relationship between the medium level 
question scores in the pretest and the posttest, and there was a significant positive 
relationship between the two variables, ρ(46) = .413, p = .004. This suggests that, 
similar to the easy level, we can expect better scores after the STEM lessons at the 
medium level, with performance being correlated to the pretest score.

Difficult Level: Scores on difficult questions were significantly higher in 
the posttest than in the pretest, as the results of a Wilcoxon Signed-Rank Test (z 
= −5.73, p <.001) reveal. The median score on the “difficult” questions posttest 
was Mdn = 60, compared with Mdn = 44 for the pretest. These findings suggest 
that participants were able to significantly improve their CT performance on the 
difficult questions following the STEM intervention. A Spearman’s correlation re-
vealed no significant relationship between the difficult question scores in the pre-
test and the posttest, ρ(46) = .203, p = .167. Thus, while improved scores are ex-
pected on the difficult CT questions after the intervention, there is no significant 
correlation between pretest and posttest performance, similar to the easy level.

Regarding Each Computational Thinking Dimension

One of the main reasons for choosing Bebras tasks is that they provide clarity 
regarding the specific dimensions of CT required to solve each question, as out-
lined in Table 1. This allows us to apply scoring functions for each CT dimension 
using functions based on the Bebras rules, as shown in Table 2. For example, the 
dimension of abstraction (AB) is necessary for solving questions 1, 3, 4, 5, 7, 8 
and 10. These questions vary in difficulty and different points are awarded for 
correct or incorrect answers. Table 4 presents the key statistical data for the CT 
dimension scores.

Table 4. Statistical Analysis of CT Dimensions
Shapiro – Wilks Wilcoxon 

Signed 
Ranks Test

Descriptives Spearman

Pretest Posttest Pretest Posttest

Abstraction
Start point = 10
Max = 67

p = .021 p = .119 z = ...5.36
p <.001

M = 16.81
SD = 7.96
Mdn = 16

M = 35.17
SD = 14.34
Mdn = 31 

rs(46) = .381
p = .008

Algorithm
Start point = 18
Max = 99

p = .006 p = .281 z = ...5.94
p <.001

M = 35.96
SD = 8.89
Mdn = 36

M = 47.52
SD = 21.36
Mdn = 45

rs(46) = .461
p = .001.
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Shapiro – Wilks Wilcoxon 
Signed 

Ranks Test

Descriptives Spearman

Pretest Posttest Pretest Posttest

Decomposition
Start point = 12
Max = 57

p = .001 p = .067 z = ...5.30
p <.001

M = 17.25
SD = 6.44
Mdn = 16

M = 30.19
SD = 10.71
Mdn = 27

rs(46) = ....009
p = .954. 

Evaluation
Start point = 20
Max = 110

p = .005 p = .071 z = ...5.94
p <.001

M = 24.92
SD = 8.88
Mdn = 21

M = 56.38
SD = 22.16
Mdn = 56

rs(46) = .485
p = .000

Generalization
Start point = 12
Max = 60

p = .001 p = .690 z = ...5.66
p <.001

M = 13.08
SD = 5.58
Mdn = 12

M = 31.25
SD =13.43
Mdn = 32

rs(46) = .226
p = .122

As shown in Table 4, Wilcoxon Signed-Rank Tests conducted between 
pretest and posttest scores across all five dimensions reveal statistically signifi-
cant differences (p <0.001). These findings indicate substantial improvements 
in performance following the STEM intervention across all CT dimensions. To 
provide further insight into the magnitude of these improvements, we calcu-
lated the percentage mean increase. The largest percentage increases, with more 
than double the improvement, were observed in the dimensions of generalization 
(239%), evaluation (226%) and abstraction (209%). Decomposition (175%) 
and algorithmic thinking (132%) also showed significant improvements, albeit 
with comparatively smaller percentage gains.

Additionally, we examined the statistical correlation between the pretest 
and posttest for each dimension separately. As presented in Table 4, a statistically 
significant medium correlation is observed for the dimensions of abstraction, al-
gorithmic thinking and evaluation, according to Spearman’s method (.38 <ρ<.49, 
p <.05). In contrast, for decomposition and generalization, the null hypothesis 
cannot be rejected using Spearman’s test (p> .05), indicating no statistically sig-
nificant correlation between the pretest and posttest for these dimensions.

Observation Data – Interpretation

Observation data during the STEM intervention and CT test-taking process were 
recorded in a research diary. In this paper, we focus on a few key issues related to CT. 
During the CT pretest, many participants reported that the questions were extreme-
ly complicated and difficult and that they were unsure how to approach them. They 
appeared discouraged, with a tendency to abandon the CT questions. However, the 
learners gradually became more engaged throughout the STEM lessons, approach-
ing progressively complex activities requiring computational thinking.
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For example, discussions and reflections were encouraged during STEM 
tasks with questions such as: “How can we break the problem and solution into 
smaller parts?”, “What do we know about this?”, “Which information is useful?”, 
“What steps must we follow to solve this, and in what order?”, “Are our solutions 
adequate, or can we improve them?”, and “Where else can we apply our solu-
tions?”. These questions helped foster a deeper understanding of computational 
thinking and problem-solving strategies.

Overall, the learners seemed to enjoy their progress and appeared more 
confident in problem-solving. It is important to note that the participants were 
not taught any of the Bebras CT questions during the intervention. Nevertheless, 
after the intervention, when the participants took the same CT questionnaire 
in the posttest, it was evident that they had adopted a computational thinking 
approach. They viewed the questions as achievable challenges, believed that they 
could solve most problems and demonstrated increased persistence, ultimately 
solving more problems than before.

Discussion and Conclusions

Computational thinking is essential for adults but identifying an effective educa-
tional program to help them develop CT remains a challenge (Zapata-Rivera et 
al., 2019). Furthermore, experts emphasize the need for research of adult learners’ 
CT, as studies focusing on older populations are limited (Cutumisu et al., 2019; 
Kotzampasaki & Koulaouzides, 2024; Ortiz et al., 2023; Poulakis & Politis, 
2021; X. Tang et al., 2020). This study aims to address this research gap by inves-
tigating the impact of a carefully designed and implemented STEM intervention 
on the CT skills of adult learners.

Our action research is aligned with experts’ recommendations for CT 
studies (Poulakis & Politis, 2021; X. Tang et al., 2020). Specifically: a) Bebras 
items were used as they do not require any prior programming knowledge; pro-
gramming questions were intentionally excluded to consciously distinguish com-
puter science knowledge from the unique computational way of thinking about 
problems and their solutions, whether specific or broad; b) Computer-based 
tools were not used for administering the CT test; instead, we opted for printed, 
colored questionnaires; c) A mixed-methods evaluation was employed, primarily 
quantitative, but also incorporating qualitative data for a deeper understanding; 
d) Our sample focused on Second Chance Schools learners, as they represent 
adult learners with distinct characteristics and are highly relevant to adult educa-
tion. Furthermore, we were able to study an age range of 26...75 years, all with-
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out prior programming or computer science knowledge; e) Content validity and 
internal consistency were assessed for reliability; and f ) The research focused on 
defining CT and its dimensions. Specifically, we successfully “measured” the five 
dimensions both before and after the intervention, across three levels of difficulty.

Overall, we observed an improvement in the adult learners’ computa-
tional thinking because of the STEM intervention. Our results indicate that a 
greater number of learners answered all the questions correctly after the STEM 
lessons. Additionally, McNemar tests for equality of proportions, conducted on 
nine closed-ended questions [1, 2, 3, 4, 5, 9, 10, 11] and open-ended question 
6, reveal a statistically significant difference, suggesting that a higher percentage 
of participants answered these questions correctly after the STEM intervention. 
Three open-ended questions [7, 8, 12] were recoded and McNemar tests between 
the pretest and posttest show a statistically significant improvement in solving 
these questions, either by providing the best or second-best solution. Thus, for 
all questions, a greater number of learners are expected to approach CT problems 
more accurately after the STEM intervention, offering either the correct answer 
or at least the second-best solution. Moreover, the significant correlation between 
the number of correct answers in CT before and after the intervention potentially 
reflects the effectiveness of the intervention in maintaining or improving the par-
ticipants’ performance.

The STEM lessons have also had a significant positive impact on the 
number of questions participants answered correctly (pretest Mdn = 1, posttest 
Mdn = 6). Additionally, there was a decrease in the abstention from answering 
questions, with learners demonstrating an increased tendency to attempt to reply 
to more CT questions after the STEM intervention. This improvement can be 
further explained by our observational data, which reflects an increase in learner 
confidence and engagement. In addition, despite the significant decrease in the 
number of unanswered questions, the Spearman correlation results show that the 
participants who had more “no answers” in the pretest tended to continue facing 
difficulties in the posttest. This may suggest that these participants require more 
targeted and personalized interventions to improve further their performance.

According to the Bebras calculation method, the overall CT score doubled 
(213%), while the paired sample t-tests reveal a statistically significant difference. 
Furthermore, Pearson’s test shows a medium correlation between the pretest and 
posttest CT scores. We also identified two mathematical models that can estimate 
the improvement in 25% of the cases (linear regression) or 32.4% (third-degree 
polynomial), which is noteworthy, considering that it applies to a human science 
mathematical formula where thinking patterns and behaviors are inherently com-
plex. Along with the other evidence, the highly statistically significant difference 
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observed between pretest and posttest scores reinforces the conclusion that the 
STEM intervention had a positive impact on the learners’ CT.

Regarding difficulty levels, paired sample t-tests indicate that we expect 
greater performance after the STEM intervention at all CT levels. The percent-
age improvements for each difficulty level are as follows: easy (230%), medium 
(265%), and difficult (176%). However, Pearson’s method reveals no correlation 
between pretest and posttest scores for easy and difficult questions. To clarify, 
although there is a statistically significant difference in mean scores, indicating 
improved performance after the intervention, there is no evidence suggesting that 
the participants’ performance on the easy pretest questions predicts their perfor-
mance on the easy posttest. In fact, we observed learners who scored extremely 
low on the pretest achieving excellent scores on the easy questions after the STEM 
lessons. Similarly, improved scores were expected on the difficult CT questions 
after the intervention, but no significant correlation was found with the pretest 
scores. On the one hand, this suggests that anyone could potentially solve dif-
ficult questions, regardless of their previous performance; on the other hand, we 
must acknowledge that only a few participants attempted the difficult questions 
on the pretest. For the medium difficulty level, performances on the pretest and 
posttest are related, as indicated by Pearson’s correlation test. To illustrate, partici-
pants with higher CT scores on the medium-level questions in the pretest were 
expected to achieve better outcomes on the same questions in the posttest.

In addition, a statistically significant improvement is observed across all 
CT dimensions following the implementation of the STEM education program. 
The percentages of improvement are as follows: generalization (239%), evalua-
tion (226%), abstraction (209%), decomposition (175%) and algorithmic think-
ing (132.24%). Pearson’s method indicates a medium correlation between the 
pretest and posttest for algorithmic thinking, evaluation and decomposition. 
This suggests that improvements in these CT dimensions were moderately linked 
to the participants’ initial performance.

We sought to compare our qualitative findings with other studies involv-
ing adults, but we were unable to find previous research that aligns with our sam-
ple, method and analysis. Although wary of comparing different age groups, we 
will refer to the study by Psycharis and Kotzampasaki (2019), which involved 115 
Greek 5th-6th grade students, as it follows a similar research method and analysis. 
In that study, the students showed a statistically significant increase in their CT 
performance on the Bebras Test after the implementation of a STEM inquiry-
based game. Specifically, their mean percentages of improvement were as follows: 
generalization (624%), algorithmic thinking (622%), abstraction (578%), de-
composition (265%) and evaluation (221%). We observe that, except for evalu-
ation, where improvement is similar to our findings, the students demonstrated 
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much greater percentages of improvement in the other dimensions. Interestingly, 
the students showed statistically significant improvement only at the easy and 
medium difficulty levels, whereas adult learners, with smaller mean improve-
ments, achieved statistically significant improvement at all difficulty levels.

In conclusion, we can affirm that the STEM intervention designed and 
implemented for this action research has had a positive impact on the adult learn-
ers’ computational thinking (CT), encompassing all CT dimensions and levels 
of difficulty. We argue that the STEM intervention helps learners gradually in-
ternalize the thought patterns of CT dimensions, enabling them to approach 
problems with a computational way of thinking. We believe that the positive 
correlation between CT, general skills and thinking styles (Durak & Saritepeci, 
2018) is crucial for understanding the world, as Denning and Tedre (2019) high-
light, and furthermore, for gaining insight into how people think. It is important 
to recognize that thinking is a multifaceted process and that the changes we have 
observed in attitude and behavior should not be underestimated. The interpreta-
tion of CT results is closely tied to other research questions we aim to address, 
which will be discussed in the following chapter on further research.

Further Research

This article presents the results of our intervention on adult learners’ (CT) as part 
of a broader mixed-methods action research project. Interviews and additional 
questionnaires were used to explore further research questions related to criti-
cal reflection, the potential for transformative learning, and the correlation with 
CT (Kotzampasaki & Koulaouzides, 2024). By addressing these supplementary 
questions, we aim to offer a deeper and more comprehensive understanding of 
how adults apply computational thinking. We are convinced that further research 
on CT-STEM in adult education is essential, particularly for learners in Second 
Chance Schools, as the outcomes there carry significant implications.
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